Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.802
Filtrar
1.
Oncol Res ; 32(4): 703-716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560571

RESUMEN

Background: Limited research has been conducted on the influence of autophagy-associated long non-coding RNAs (ARLncRNAs) on the prognosis of hepatocellular carcinoma (HCC). Methods: We analyzed 371 HCC samples from TCGA, identifying expression networks of ARLncRNAs using autophagy-related genes. Screening for prognostically relevant ARLncRNAs involved univariate Cox regression, Lasso regression, and multivariate Cox regression. A Nomogram was further employed to assess the reliability of Riskscore, calculated from the signatures of screened ARLncRNAs, in predicting outcomes. Additionally, we compared drug sensitivities in patient groups with differing risk levels and investigated potential biological pathways through enrichment analysis, using consensus clustering to identify subgroups related to ARLncRNAs. Results: The screening process identified 27 ARLncRNAs, with 13 being associated with HCC prognosis. Consequently, a set of signatures comprising 8 ARLncRNAs was successfully constructed as independent prognostic factors for HCC. Patients in the high-risk group showed very poor prognoses in most clinical categories. The Riskscore was closely related to immune cell scores, such as macrophages, and the DEGs between different groups were implicated in metabolism, cell cycle, and mitotic processes. Notably, high-risk group patients demonstrated a significantly lower IC50 for Paclitaxel, suggesting that Paclitaxel could be an ideal treatment for those at elevated risk for HCC. We further identified C2 as the Paclitaxel subtype, where patients exhibited higher Riskscores, reduced survival rates, and more severe clinical progression. Conclusion: The 8 signatures based on ARLncRNAs present novel targets for prognostic prediction in HCC. The drug candidate Paclitaxel may effectively treat HCC by impacting ARLncRNAs expression. With the identification of ARLncRNAs-related isoforms, these results provide valuable insights for clinical exploration of autophagy mechanisms in HCC pathogenesis and offer potential avenues for precision medicine.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Pronóstico , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , ARN Largo no Codificante/genética , Reproducibilidad de los Resultados , Autofagia/genética , Paclitaxel
2.
Oncol Res ; 32(4): 717-726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560576

RESUMEN

The long non-coding RNA, Negative Regulator of Antiviral Response (NRAV) has been identified as a participant in both respiratory virus replication and immune checkpoints, however, its involvement in pan-cancer immune regulation and prognosis, particularly those of hepatocellular carcinoma (HCC), remains unclear. To address this knowledge gap, we analyzed expression profiles obtained from The Cancer Genome Atlas (TCGA) database, comparing normal and malignant tumor tissues. We found that NRAV expression is significantly upregulated in tumor tissues compared to adjacent nontumor tissues. Kaplan-Meier (K-M) analysis revealed the prognostic power of NRAV, wherein overexpression was significantly linked to reduced overall survival in a diverse range of tumor patients. Furthermore, noteworthy associations were observed between NRAV, immune checkpoints, immune cell infiltration, genes related to autophagy, epithelial-mesenchymal transition (EMT), pyroptosis, tumor mutational burden (TMB), and microsatellite instability (MSI) across different cancer types, including HCC. Moreover, NRAV upregulation expression was associated with multiple pathological stages by clinical observations. Furthermore, our investigation revealed a substantial elevation in the expression of NRAV in both HCC tumor tissues and cells compared to normal tissues and cells. The inhibition of NRAV resulted in the inhibition of cell proliferation, migration, and invasion in HCC cells, while also influencing the expression of CD274 (PD-L1) and CD44, along with various biomarkers associated with EMT, autophagy, and pyroptosis. The aforementioned results propose NRAV as a promising prognostic biomarker for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Estudios de Factibilidad , Neoplasias Hepáticas/genética , Biomarcadores , Autofagia , Pronóstico
3.
Oncol Res ; 32(4): 679-690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560575

RESUMEN

Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally, we explored the impact of FAK degradation on HCC metastasis through wound healing experiments, transwell invasion experiments, and a xenograft tumor model. The expression of proteins related to epithelial-mesenchymal transition (EMT) was measured to elucidate the underlying mechanisms. The results showed that FAK PROTAC can degrade FAK, inhibit the migration and invasion of HCC cells in vitro, and notably decrease the lung metastasis of HCC in vivo. Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited. Consequently, degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis, holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Línea Celular Tumoral , Pronóstico , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Invasividad Neoplásica/genética , Metástasis de la Neoplasia
4.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565287

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.


Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Humanos , Estudio de Asociación del Genoma Completo , Transcriptoma/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Integrina beta1
5.
Mikrochim Acta ; 191(5): 229, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565645

RESUMEN

The growing interest in microfluidic biosensors has led to improvements in the analytical performance of various sensing mechanisms. Although various sensors can be integrated with microfluidics, electrochemical ones have been most commonly employed due to their ease of miniaturization, integration ability, and low cost, making them an established point-of-care diagnostic method. This concept can be easily adapted to the detection of biomarkers specific to certain cancer types. Pathological profiling of hepatocellular carcinoma (HCC) is heterogeneous and rather complex, and biopsy samples contain limited information regarding the tumor and do not reflect its heterogeneity. Circulating tumor DNAs (ctDNAs), which can contain information regarding cancer characteristics, have been studied tremendously since liquid biopsy emerged as a new diagnostic method. Recent improvements in the accuracy and sensitivity of ctDNA determination also paved the way for genotyping of somatic genomic alterations. In this study, three-electrode (Au-Pt-Ag) glass chips were fabricated and combined with polydimethylsiloxane (PDMS) microchannels to establish an electrochemical microfluidic sensor for detecting c.747G > T hotspot mutations in the TP53 gene of ctDNAs from HCC. The preparation and analysis times of the constructed sensor were as short as 2 h in total, and a relatively high flow rate of 30 µl/min was used during immobilization and hybridization steps. To the best of our knowledge, this is the first time a PDMS-based microfluidic electrochemical sensor has been developed to target HCC ctDNAs. The system exhibited a limit of detection (LOD) of 24.1 fM within the tested range of 2-200 fM. The sensor demonstrated high specificity in tests conducted with fully noncomplementary and one-base mismatched target sequences. The developed platform is promising for detecting HCC-specific ctDNA at very low concentrations without requiring pre-enrichment steps.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sistemas Microelectromecánicos , Humanos , Microfluídica , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Dimetilpolisiloxanos
6.
J Cell Mol Med ; 28(8): e18230, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568083

RESUMEN

Liver hepatocellular carcinoma (LIHC) is a highly lethal form of cancer that is among the deadliest cancer types globally. In terms of cancer-related mortality rates, liver cancer ranks among the top three, underscoring the severity of this disease. Insufficient analysis has been conducted to fully understand the potential value of the extracellular matrix (ECM) in immune infiltration and the prognostic stratification of LIHC, despite its recognised importance in the development of this disease. The scRNA-seq data of GSE149614 was used to conduct single-cell analysis on 10 LIHC samples. CellChat scores were calculated for seven cell populations in the descending cohort to investigate cellular communication, while PROGENy scores were calculated to determine tumour-associated pathway scores in different cell populations. The pathway analysis using GO and KEGG revealed the enrichment of ECM-associated genes in the pathway, highlighting the potential role of the ECM in LIHC development. By utilizing the TCGA-LIHC cohort, an ECM-based prognostic model for LIHC was developed using Lasso regression. Immune infiltration scores were calculated using two methods, and the performance of the ECM-related risk score was evaluated using an independent cohort from the CheckMate study. To determine the precise expression of ECM-associated risk genes in LIHC, we evaluated hepatocellular carcinoma cell lines using a range of assays, including Western blotting, invasion assays and Transwell assays. Using single-cell transcriptome analysis, we annotated the spatially-specific distribution of major immune cell types in single-cell samples of LIHC. The main cell types identified and annotated included hepatocytes, T cells, myeloid cells, epithelial cells, fibroblasts, endothelial cells and B cells. The utilisation of cellchat and PROGENy analyses enabled the investigation and unveiling of signalling interactions, protein functionalities and the prominent influential pathways facilitated by the primary immune cell types within the LIHC. Numerous tumour pathways, including PI2K, EGFR and TGFb, demonstrated a close correlation with the involvement of ECM in LIHC. Moreover, an evaluation was conducted to assess the primary ECM-related functional changes and biological pathway enrichment in LIHC. Differential genes associated with ECM were identified and utilised to create prognostic models. The prognostic stratification value of these models for LIHC patients was confirmed through validation in multiple databases. Furthermore, through immune infiltration analysis, it was discovered that ECM might be linked to the irregular expression and regulation of numerous immune cells. Additionally, histone acetylation was mapped against gene mutation frequencies and differential expression profiles. The prognostic stratification efficacy of the ECM prediction model constructed in the context of PD-1 inhibitor therapy was also examined, and it exhibited strong stratification performance. Cellular experiments, including Western blotting, invasion and Transwell assays, revealed that ECM-associated risk genes have a promoting effect on the development of LIHC. The creation of biomarkers for LIHC using ECM-related genes unveiled substantial correlations with immune microenvironmental infiltration and functional mutations in various tumour pathways. This enlightens us to the possibility that the influence of ECM on tumours may extend beyond simply promoting the fibrotic process and the stromal composition of tumours.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Pronóstico , Células Endoteliales , Multiómica , Neoplasias Hepáticas/genética , Matriz Extracelular/genética
7.
Sci Rep ; 14(1): 8013, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580754

RESUMEN

Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentales , Neoplasias Hepáticas , Ratones , Animales , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteómica , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Dietilnitrosamina/efectos adversos , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos
8.
Mol Cancer ; 23(1): 74, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582885

RESUMEN

BACKGROUND AND AIMS: Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS: A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS: CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION: Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Ratones , Animales , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , ARN Largo no Codificante/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , ARN Guía de Sistemas CRISPR-Cas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/uso terapéutico , Proteómica , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica
9.
PLoS One ; 19(4): e0301711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573968

RESUMEN

A family of Peptidyl-prolyl isomerases (PPIases), called Cyclophilins, localize to numerous intracellular and extracellular locations where they contribute to a variety of essential functions. We previously reported that non-immunosuppressive pan-cyclophilin inhibitor drugs like reconfilstat (CRV431) or NV556 decreased multiple aspects of non-alcoholic fatty liver disease (NAFLD) in mice under two different non-alcoholic steatohepatitis (NASH) mouse models. Both CRV431 and NV556 inhibit several cyclophilin isoforms, among which cyclophilin D (CypD) has not been previously investigated in this context. It is unknown whether it is necessary to simultaneously inhibit multiple cyclophilin family members to achieve therapeutic benefits or if loss-of-function of one is sufficient. Furthermore, narrowing down the isoform most responsible for a particular aspect of NAFLD/NASH, such as hepatocellular carcinoma (HCC), would allow for more precise future therapies. Features of human diabetes-linked NAFLD/NASH can be reliably replicated in mice by administering a single high dose of streptozotocin to disrupt pancreatic beta cells, in conjunction with a high sugar, high fat, high cholesterol western diet over the course of 30 weeks. Here we show that while both wild-type (WT) and Ppif-/- CypD KO mice develop multipe severe NASH disease features under this model, the formation of HCC nodules was significantly blunted only in the CypD KO mice. Furthermore, of differentially expressed transcripts in a qPCR panel of select HCC-related genes, nearly all were downregulated in the CypD KO background. Cyclophilin inhibition is a promising and novel avenue of treatment for diet-induced NAFLD/NASH. This study highlights the impact of CypD loss-of-function on the development of HCC, one of the most severe disease outcomes.


Asunto(s)
Carcinoma Hepatocelular , Diabetes Mellitus , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/prevención & control , Carcinoma Hepatocelular/patología , Ciclofilinas/genética , Diabetes Mellitus/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/prevención & control , Neoplasias Hepáticas/tratamiento farmacológico , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Ciclofilina D , Estreptozocina
10.
Nat Commun ; 15(1): 3031, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589411

RESUMEN

Hepatoblastomas (HB) display heterogeneous cellular phenotypes that influence the clinical outcome, but the underlying mechanisms are poorly understood. Here, we use a single-cell multiomic strategy to unravel the molecular determinants of this plasticity. We identify a continuum of HB cell states between hepatocytic (scH), liver progenitor (scLP) and mesenchymal (scM) differentiation poles, with an intermediate scH/LP population bordering scLP and scH areas in spatial transcriptomics. Chromatin accessibility landscapes reveal the gene regulatory networks of each differentiation pole, and the sequence of transcription factor activations underlying cell state transitions. Single-cell mapping of somatic alterations reveals the clonal architecture of each tumor, showing that each genetic subclone displays its own range of cellular plasticity across differentiation states. The most scLP subclones, overexpressing stem cell and DNA repair genes, proliferate faster after neo-adjuvant chemotherapy. These results highlight how the interplay of clonal evolution and epigenetic plasticity shapes the potential of HB subclones to respond to chemotherapy.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Plasticidad de la Célula/genética , Multiómica , Evolución Clonal/genética
11.
Funct Integr Genomics ; 24(2): 75, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600341

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 µM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.


Asunto(s)
Carcinoma Hepatocelular , Compuestos Heterocíclicos con 3 Anillos , Neoplasias Hepáticas , Pironas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
12.
Sci Rep ; 14(1): 7997, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580756

RESUMEN

Hepatocellular carcinoma (HCC) is characterized by high incidence and fatality rates worldwide. In our exploration of prognostic factors in HCC, the 26s proteasome subunit, non-ATPase 1 (PSMD1) protein emerged as a significant contributor, demonstrating its potential as a therapeutic target in this aggressive cancer. PSMD1 is a subunit of the 19S regulatory particle in the 26S proteasome complex; the 19S particle controls the deubiquitination of ubiquitinated proteins, which are then degraded by the proteolytic activity of the complex. Proteasome-targeting in cancer therapy has received significant attention because of its practical application as an established anticancer agent. We investigated whether PSMD1 plays a critical role in cancer owing to its prognostic significance. PSMD1 depletion induced cell cycle arrest in G2/M phase, DNA damage and apoptosis of cancer cells, irrespective of the p53 status. PSMD1 depletion-mediated cell death was accompanied by an increase in overall protein ubiquitination. These phenotypes occurred exclusively in cancer cells, with no effects observed in normal cells. These findings indicate that PSMD1 depletion-mediated ubiquitination of cellular proteins induces cell cycle arrest and eventual death in cancer cells, emphasizing PSMD1 as a potential therapeutic target in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptosis/genética , Carcinoma Hepatocelular/genética , Daño del ADN , Neoplasias Hepáticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
13.
Front Immunol ; 15: 1373321, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596684

RESUMEN

Introduction: Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods: The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results: Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions: Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , 60552 , Resistencia a Antineoplásicos , Línea Celular Tumoral , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
14.
Front Immunol ; 15: 1360063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558809

RESUMEN

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Riboswitch , Ratones , Humanos , Animales , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Terapia Genética , Interleucina-12/genética , Interleucina-12/metabolismo , Tetraciclina/farmacología
15.
Viral Immunol ; 37(3): 159-166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588555

RESUMEN

The high global prevalence of hepatitis B and hepatitis C and the poor prognosis of hepatitis B and hepatitis C-associated hepatocellular carcinoma (HCC), necessitates the early diagnosis and treatment of the disease. Recent studies show that cell-to-cell communication via extracellular vesicles (EVs) is involved in the HCC progression. The objective of the following study was to explore the role of EVs in the progression of viral-induced HCC and investigate their potential for the early diagnosis of cancer. First, the mRNA derived from EVs of HCC patients was compared to the mRNA derived from EVs from the healthy controls. Expression analysis of ANGPTL3, SH3BGRL3, and IFITM3 genes from the EVs was done. Afterward, to confirm whether hepatocytes can uptake EVs, HuH7 cells were exposed to EVs, and the expression analysis of downstream target genes (AKT, TNF-α, and MMP-9) in Huh7 cells was done. Transcriptional analysis showed that in the EVs from HCC patients, the expression levels of ANGPTL3, SH3BGRL3, and IFITM3 were significantly increased by 2.62-, 4.3-, and 9.03-folds, respectively. The downstream targets, AKT, TNF-α, and MMP-9, also showed a considerable change of 4.1-, 1.46-, and 5.05-folds, respectively, in Huh7 cells exposed to HCC EVs. In conclusion, the following study corroborates the role of EVs in HCC progression. Furthermore, the significant alteration in mRNA levels of the selected genes demonstrates their potential to be used as possible biomarkers for the early diagnosis of HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma Hepatocelular , Vesículas Extracelulares , Hepatitis B , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt , Factor de Necrosis Tumoral alfa/metabolismo , Hepatitis C/genética , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , ARN Mensajero/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína 3 Similar a la Angiopoyetina
16.
J Viral Hepat ; 31 Suppl 1: 26-34, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606944

RESUMEN

Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patología , Vectores Genéticos , Plásmidos , Terapia Genética , Dependovirus/genética , Dependovirus/metabolismo , Integración Viral
17.
J Viral Hepat ; 31 Suppl 1: 35-40, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38606953

RESUMEN

Hepatocellular carcinoma (HCC) has long been recognized as a complication in people with chronic liver disease, particularly those with cirrhosis. Two gene therapies for haemophilia A and B recently approved in Europe and the US utilize adeno-associated virus (AAV) vectors designed to target hepatocytes. A number of other AAV gene therapies are undergoing clinical investigation for both liver and extrahepatic diseases, many of which likely transduce hepatocytes as well. Although AAV vectors predominantly persist in episomal forms, concerns about insertional mutagenesis have arisen due to findings in pre-clinical models and in a small subset of human HCC cases featuring wild-type AAV integrations in proximity to potential oncogenes. Despite the absence of any causative link between AAV vector therapy and HCC in approved extrahepatic gene therapies or haemophilia gene therapy trials, the package inserts for the recently approved haemophilia gene therapies advise HCC screening in subsets of individuals with additional risk factors. In this review, we discuss HCC risk factors, compare various screening modalities, discuss optimal screening intervals, and consider when to initiate and possibly discontinue screening. At this early point in the evolution of gene therapy, we lack sufficient data to make evidence-based recommendations on HCC screening. While AAV vectors may eventually be shown to be unassociated with risk of HCC, we presently favour a cautious approach that entails regular surveillance until such time as it is hopefully proven to be unnecessary.


Asunto(s)
Carcinoma Hepatocelular , Hemofilia A , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Hemofilia A/terapia , Vectores Genéticos , Terapia Genética
18.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621914

RESUMEN

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , MicroARNs , Paeonia , Extractos Vegetales , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2 , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Apoptosis , Proliferación Celular , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Mensajero , Luciferasas/metabolismo , Luciferasas/farmacología , Línea Celular Tumoral
19.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1295-1309, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621977

RESUMEN

The aim of this study was to explore the mechanism of icaritin-induced ferroptosis in hepatoma HepG2 cells. By bioinformatics screening, the target of icariin's intervention in liver cancer ferroptosis was selected, the protein-protein interaction(PPI) network was constructed, the related pathways were focused, the binding ability of icariin and target protein was evaluated by molecular docking, and the impact on patients' survival prognosis was predicted and the clinical prediction model was built. CCK-8, EdU, and clonal formation assays were used to detect cell viability and cell proliferation; colorimetric method and BODIPY 581/591 C1 fluorescent probe were used to detect the levels of Fe~(2+), MDA and GSH in cells, and the ability of icariin to induce HCC cell ferroptosis was evaluated; RT-qPCR and Western blot detection were used to verify the mRNA and protein levels of GPX4, xCT, PPARG, and FABP4 to determine the expression changes of these ferroptosis-related genes in response to icariin. Six intervention targets(AR, AURKA, PPARG, AKR1C3, ALB, NQO1) identified through bioinformatic analysis were used to establish a risk scoring system that aids in estimating the survival prognosis of HCC patients. In conjunction with patient age and TNM staging, a comprehensive Nomogram clinical prediction model was developed to forecast the 1-, 3-, and 5-year survival of HCC patients. Experimental results revealed that icariin effectively inhibited the activity and proliferation of HCC cells HepG2, significantly modulating levels of Fe~(2+), MDA, and lipid peroxidation ROS while reducing GSH levels, hence revealing its potential to induce ferroptosis in HCC cells. Icariin was found to diminish the expression of GPX4 and xCT(P<0.01), inducing ferroptosis in HCC cells, potentially in relation to inhibition of PPARG and FABP4(P<0.01). In summary, icariin induces ferroptosis in HCC cells via the PPARG/FABP4/GPX4 pathway, providing an experimental foundation for utilizing the traditional Chinese medicine icariin in the prevention or treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , PPAR gamma , Células Hep G2 , Modelos Estadísticos , Simulación del Acoplamiento Molecular , Pronóstico , Proteínas de Unión a Ácidos Grasos
20.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621980

RESUMEN

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Especies Reactivas de Oxígeno , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA